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Abstract
We develop a suitable theoretical framework for studying plasmons in nanotube
bundles. In the plane perpendicular to the tubes, the nanotubes form a two-
dimensional lattice. We use a simple model of free electron gas confined to
arrays of cylindrical surfaces, however the theoretical framework can also be
applied to more sophisticated models for carbon nanotubes. Both intrasubband
(classical) and intersubband (quantum) plasmons in such nanotube bundle
systems are studied. Analytical solutions have been obtained for the case where
only one subband is occupied, while numerical solutions have been obtained
for the case of many occupied subbands. Intertube Coulomb coupling is found
to play an intricate role, as it can both harden and soften plasmon modes in
the same nanotube bundle. Intertube Coulomb coupling is also responsible for
sizable plasmon dispersions in the transverse plane. All plasmons are found
to be undamped by the corresponding single particle type electron–hole pair
excitations. The classical plasmon exhibits three-dimensional character in the
long wavelength limit, and one-dimensional character in the short wavelength
limit. For quantum plasmons, the plasmon energy can be significantly larger
than the corresponding single particle excitation energy between subbands.
This feature is similar to quantum plasmons in semiconductor quantum wire
systems.

1. Introduction

Since the discovery of carbon nanotubes in 1991 by Iijima [1], the study of carbon nanotube
systems has been an active area of research. These cylindrical fullerenes are molecular versions
of quantum wires with a very rich portfolio of mechanical structures and interesting electrical
and optical properties [2]. Many applications of carbon nanotubes are possible, from artificial
muscles [3], molecular electronics [4], to data storage, field emission displays and sensors. Li
et al [5] have successfully grown highly ordered hexagonal arrays of carbon nanotubes.

Plasmon excitations in a single carbon nanotube have been studied by several authors
theoretically. Sato et al [6] derived the general expression for the dielectric function for a
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single walled nanotube, and gave analytical and numerical results for the intrasubband plasmon.
Davids et al [7] presented numerical results for intersubband plasmons. Lin et al [8,9] studied
both intrasubband and intersubband plasmons in both single walled and multiwalled carbon
nanotubes. Others [10, 11] have also presented similar studies. Magnetoplasmons in a single
carbon nanotube have been studied by several authors as well [12–14].

A number of experimental papers on plasmons in carbon nanotubes detected by electron
energy loss spectroscopy (EELS) have also been published [15–18]. These papers identified
bulk plasmons [16–18] as well as a surface plasmon [15]. The lower energy mode in the 5–8 eV
range has been identified as the π plasmon, while the higher energy mode in the 20–30 eV
range has been identified as the π + σ plasmon. Momentum dependent EELS measurements
by Knupfer et al [18] found significant dispersion of the π plasmon.

For a single carbon nanotube, the cylindrical symmetry of the tube greatly simplifies the
problem, implying that there is no coupling between plasmon modes of different azimuthal
indices. In a periodic array of carbon nanotubes, the cylindrical symmetry is broken by intertube
Coulomb coupling, and in general the dielectric matrix has nonzero off-diagonal elements
and the plasmon modes become coupled. Lin et al [19–22] have extended their theoretical
study to a carbon nanotube lateral lattice (a periodic array where the nanotubes form a one-
dimensional (1D) array in the plane transverse to the direction of the tubes), and to carbon
nanotube bundles, where a two-dimensional (2D) lattice is formed in the plane transverse to
the direction of the tubes [23,24]. However, while the authors seem to have done a fine job in
the case of a single nanotube, the extensions of their theory to periodic arrays have suffered
from serious problems. In [19] the authors found the intersubband plasmon to be an acoustic
mode. This result is unphysical because the intersubband plasmon energy should not be less
than the single particle intersubband transition energy in the long wavelength limit. Indeed,
in similar systems of semiconductor quantum wire arrays, the fact that intersubband plasmons
are optical modes are well established [25,26]. When dealing with wavevector conservation in
periodic arrays, Lin et al [19–23] have neglected umklapp terms which have been found to play
a crucial role for intersubband plasmons in semiconductor quantum wire arrays [25,26]. At zero
wavevector, the umklapp terms make a nonzero, substantial contribution in the intersubband
part of the dielectric function. The expressions in [21–23] for the dielectric function in the small
wavevector limit are meaningless, because the zeroth order term due to umklapp contribution
absent from the expressions actually dominates over the terms dependent on the wavevector.
In [24], Huang et al kept the umklapp terms in the initial formalism, however the authors
worked with a dielectric function in reciprocal lattice space, which in principle requires the
solving of an n × n matrix where n is infinite. In the actual calculations, the authors kept only
the term corresponding to a null reciprocal lattice vector, making the approximation equivalent
to [21–23]. Based on the work on semiconductor quantum wire arrays [25], it is known that
the convergence in reciprocal lattice space is slow. From the work presented in this paper, we
can infer that if the formalism of [24] is used, a matrix size of about 640 000 × 640 000 is
needed to achieve convergence for a carbon nanotube bundle (the authors truncated the matrix
to 1 × 1). In this paper, we show that the formalism can be developed without spanning the
dielectric function in reciprocal lattice space, eliminating the need to use such large matrices.

The aim of this paper is to develop a suitable theoretical framework for plasmons in
a carbon nanotube bundle, or a carbon nanotube array which forms a 2D lattice in the plane
perpendicular to the nanotubes. Real samples like this with a hexagonal lattice in the transverse
plane have been fabricated [5]. The interplay between the azimuthal symmetry of a single tube
and the azimuthal symmetry breaking by the intertube Coulomb coupling, and the symmetry
of the 2D lattice make this system much more complex and interesting than a single nanotube.
We model electrons in the conduction band of carbon nanotubes as electron gas confined to
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cylindrical shells. This is an over simplification, because in real carbon nanotubes there are
π band and σ band electrons, and the electronic properties are dependent on the geometric
arrangement of atoms on the carbon nanotube. Ostling et al [27] find that a jellium model can
account for the most essential features of the electronic structure in carbon nanotube systems.
The electron gas model allows us to concentrate on developing a correct theoretical framework.
Once the framework is established, it can be combined with more realistic electronic band states
for more quantitative comparison with experiments. We expect results from this paper to be
qualitatively correct for the π plasmon. The π + σ plasmon found experimentally cannot be
described in the present work since it will require a two species electron gas model or real
electronic band structure. The theoretical framework in this paper can be extended to deal with
these issues in the future.

2. Formalism

We consider a carbon nanotube bundle whose cross section is a 2D lattice. To study collective
electronic excitations in the system, we use the self-consistent field formalism of Ehrenreich
and Cohen [28], neglecting retardation effects. This formalism, combined with a quantum
mechanical treatment, has been applied successfully to quantum wire superlattices [25, 26]
and quantum dot arrays [29]. This approach has the advantage that both intrasubband and
intersubband plasmons can be studied on the same footing.

In this paper we need to use both 2D and 3D vectors. Three-dimensional vectors are
indicated by bold letters, while 2D vectors are indicated by a bar on top.

We start from the Poisson equation in Fourier space

V (q) = 4πe2

εq2
n(q) (2.1)

where q is a 3D wavevector, ε is the background dielectric constant, V (q) is the Coulomb
potential, and n(q) is the density response. If we represent single particle quantum electronic
states in a lattice of carbon nanotubes as |a〉, n(q) can be expressed as

n(q) = 2
∑
a,a′

〈a|V |a′〉〈a′|eiq·r|a〉 fa′ − fa

Ea′ − Ea + h̄ω
(2.2)

where a, a′ are composite quantum numbers for the spatial degrees of freedom, fa′ , fa are
Fermi distribution functions, and Ea′ , Ea are single particle energies. The factor of 2 in
equation (2.2) comes from spin degeneracy since we assume no magnetic field is applied. The
matrix element for the Coulomb potential V (r) can be rewritten as

〈a|V |a′〉 =
∑
q′

V (q′)〈a|e−iq′·r|a′〉 (2.3)

where we have made use of the Fourier expansion for V (r).
For a lattice of nanotubes where overlap of wavefunctions between different nanotubes is

small, it is an excellent approximation to replace |a〉 with a tight-binding wavefunction,

|a〉 = eikzz
∑
r̄j

ψm(ρ̄ − r̄j )e
ik̄·r̄j . (2.4)

Here we have assumed that the nanotubes are aligned in the z direction and form a 2D lattice
in the transverse plane. Hence r̄j is the 2D lattice vector, and ρ̄ is the projection of the 3D
vector r onto the transverse plane.
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In this paper we treat carbon nanotubes as cylindrical shells of radius R with negligible
wall thickness. Due to the cylindrical symmetry of a carbon nanotube, the wavefunction ψm(ρ̄)

has the form

ψm(ρ̄) = f (ρ)eimφ, m = 0, ±1, ±2, . . . , (2.5)

where φ is the azimuthal angle, and f (ρ) is related to the δ-function by

2πρf 2(ρ) = δ(ρ − R). (2.6)

The single particle energy Ea is given by

Ekz,m = h̄2k2
z

2m∗ +
h̄2m2

2m∗R2
, (2.7)

where m∗ is the effective mass of the electron.
Making use of equation (2.4) and neglect wavefunction overlap between different

nanotubes, we obtain

〈a′|eiq·r|a〉 = δk′
z,kz+qz

δk̄′,k̄+q̄xy+ḠAmm′(q̄xy) (2.8)

where Ḡ is a 2D reciprocal lattice vector, and

Amm′(q̄xy) =
∫ ∫

ψ∗
m′(ρ̄)ψm(ρ̄)eiq̄xy ·ρ̄ρ dρ dφ = 1

2π

∫ 2π

0
ei(m−m′)φeiqxyR cos(φ−φ0) dφ. (2.9)

In the above equation, φ0 = arctan(qy/qx), qxy =
√

q2
x + q2

y . Since

eix cos φ =
∞∑

n=−∞
inJn(x)einφ (2.10)

where Jn(x) are Bessel functions of the first kind, equation (2.9) can be written as

Amm′(q̄xy) = im
′−mJm′−m(qxyR)e−i(m′−m)φ0 . (2.11)

From the above equation, it is obvious that Amm′ depends on the difference 	m = m′ − m

only, thus allowing us to write

A	m(q̄xy) = i	mJ	m(qxyR)e−i	mφ0 . (2.12)

Combining equations (2.1)–(2.3) and (2.8), we have

V (q) = 8πe2

εq2

∑
Ḡ

V (q + G)
∑
mm′

A∗
	m(q̄xy + Ḡ)A	m(q̄xy)

∑
k

fa′ − fa

Ea′ − Ea + h̄ω
. (2.13)

Here G = (Ḡ, 0).
If we define

W	m(q) =
∑
Ḡ

V (q + G)A∗
	m(q̄xy + Ḡ) (2.14)

equation (2.13) can be written as

V (q) = 8πe2

εq2

∑
mm′

W	m(q)A	m(q̄xy)
∑

k

fa′ − fa

Ea′ − Ea + h̄ω
. (2.15)

Since W	m(q + G) = W	m(q), from equation (2.15) we have

V (q + G) = 8πe2

ε|q + G|2
∑
mm′

W	m(q)A	m(q̄xy + Ḡ)
∑

k

fa′ − fa

Ea′ − Ea + h̄ω
. (2.16)
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If we multiply equation (2.16) by A∗
	m′(q̄xy + Ḡ) and then sum over Ḡ, we get

W	m′(q) =
∑
mm′

W	m(q)
∑
Ḡ

8πe2

ε|q + G|2 A∗
	m′(q̄xy + Ḡ)A	m(q̄xy + Ḡ)

∑
k

fa′ − fa

Ea′ − Ea + h̄ω
.

(2.17)

The summation of m and m′ in equation (2.17) can be replaced by the summation over 	m

and m, hence

W	m′(q) =
∑
	m

W	m(q)
∑
Ḡ

4πe2

ε|q + G|2 A∗
	m′(q̄xy + Ḡ)A	m(q̄xy + Ḡ)P	m(qz, ω) (2.18)

where

P	m(qz, ω) = 2
∑
k,m

fkz+qz,m+	m − fkz,m

Ekz+qz,m+	m − Ekz,m + h̄ω
. (2.19)

Equation (2.18) implies that the plasmon modes are determined by the zeros of the dielectric
matrix

ε	m,	m′ = δ	m,	m′ − P	m(qz, ω)Q	m,	m′(q) (2.20)

where

Q	m,	m′(q) =
∑
Ḡ

4πe2

ε|q + G|2 A∗
	m′(q̄xy + Ḡ)A	m(q̄xy + Ḡ)

=
∑
Ḡ

4πe2

ε|q + G|2 i	m−	m′
J	m(|q̄xy + Ḡ|R)J	m′(|q̄xy + Ḡ|R)ei(	m′−	m)φ0(q̄xy+Ḡ).

(2.21)

We note that

Q	m′,	m(q) = Q∗
	m,	m′(q). (2.22)

Equation (2.20) for a lattice of nanotubes is to be compared to the following equation for
the case of a single nanotube [6, 8]:

ε	m,	m′ = δ	m,	m′

[
1 − P	m(qz, ω)

πe2

ε
I	m(qzR)K	m(qzR)

]
, (2.23)

where I	m and K	m are modified Bessel functions of the first and second kind respectively,
and P	m(qz, ω) has the same form as (2.19) except that k is replaced by kz.

The property of Q	m,	m′(q) in the long wavelength limit q → 0 is of special interest. If n

represents the highest rotation symmetry axis of the 2D lattice, then the summation over Ḡ �= 0
terms in equation (2.21) vanishes when (	m′ − 	m)/n is not an integer, and Q	m,	m′(0) is
equal to the Ḡ = 0 term only. Making use of the fact that for 	m > 0 and x → 0,

J	m(x) −→ 1

(	m)!

(
x

2

)	m

(2.24)

we have

Q	m′,	m(0) = (−1)(|	m|−	m+|	m′|−	m′)/2 4πe2i	m−	m′

ε|	m|!|	m′|!
(

R

2

)|	m|+|	m′|

lim
q→0

q
|	m|+|	m′|
xy

q2
ei(	m′−	m)φ(q̄xy ) (2.25)

when (	m′ − 	m)/n is not an integer.
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3. Results

Equation (2.23) tells us that, for a single nanotube, the dielectric matrix has only diagonal
elements, namely plasmon modes corresponding to different 	m are decoupled. In contrast,
the dielectric matrix in equation (2.20) for a lattice of nanotubes is no longer diagonal; the
azimuthal symmetry is broken by intertube Coulomb coupling in the lattice and hence the
plasmon modes with different 	m are now coupled to each other.

Equation (2.19) can be evaluated at zero temperature to give

P	m(qz, ω) = m∗

πh̄2qzau

∑
m

ln
(h̄ω−m + E	m + h̄2m	m

m∗R2 )2 − (h̄ω)2

(h̄ω+m + E	m + h̄2m	m
m∗R2 )2 − (h̄ω)2

(3.1)

where au is the area of a 2D unit cell, and

h̄ω±m = (h̄qz)
2

2m∗ ± h̄2qzkF,m

m∗ (3.2)

with kF,m being the Fermi wavevector for the subband with index m, and

E	m = (h̄	m)2

2m∗R2
. (3.3)

As is obvious from equation (2.7), subbands with azimuthal indices ±m are degenerate and
have the same Fermi wavevector, kF,−m = kF,m. In deriving equation (3.1), we have used the
fact that the single particle energy in equation (2.7) is even in kz and m, hence a transformation
from kz to −kz or from m to −m leaves the expression unchanged. It can be shown that
P	m(qz, ω) is even in 	m, i.e.,

P−	m(qz, ω) = P	m(qz, ω). (3.4)

3.1. Classical plasmon (	m = 0 mode)

The 	m = 0 mode is an intrasubband plasmon mode. According to equation (2.20), the
coupling of this mode with other 	m �= 0 modes depends on if P0(qz, ω)Q0,	m(q) vanishes
or not. In the long wavelength limit, P0(qz, ω) ∝ q2

z . Since the Ḡ = 0 term inQ0,	m(0) is given
by equation (2.25) and the Ḡ �= 0 terms are well behaved, we find that P0(qz, ω)Q0,	m(0) = 0
in the long wavelength limit for any |	m| �= 0. Therefore in the long wavelength limit, the
	m = 0 mode is decoupled from all 	m �= 0 intersubband plasmon modes, and is determined
by the zeros of the diagonal element ε0,0 only. This implies that we can expect the coupling
of the classical plasmon to 	m �= 0 modes to be small for small wavevector q at least.

For finite wavevector q, in the diagonal approximation, i.e. we ignore the coupling to
	m �= 0 modes, the 	m = 0 intrasubband plasmon frequency ω is determined by the equation

P0(qz, ω)Q0,0(q) = 1. (3.5)

Equation (3.5) is equivalent to
∏
m

(h̄ω−m)2 − (h̄ω)2

(h̄ω+m)2 − (h̄ω)2
= eB0(q) (3.6)

where

B0(q) = πh̄2qzau

m∗Q0,0(q)
. (3.7)

We can demonstrate that under the right conditions, equation (3.6) gives the classical
plasmon formula in 3D, i.e.,

ω2 = 4πe2ne

εm∗ (3.8)
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where ne is the electron density. In the long wavelength limit q → 0, we have Q0,0(q) →
4πe2/(εq2), h̄ω±m → 0, B0,0(q) → 0, and eB0,0(q) → 1 + B0,0(q). To lowest order in q,
equation (3.6) gives

1 +
1

(h̄ω)2

∑
m

[(h̄ω+m)2 − (h̄ω−m)2] = 1 + B0,0(q) (3.9)

which leads to the solution

ω2 = 8e2q2
z

auεm∗q2

∑
m

kF,m. (3.10)

On the other hand, the electron density ne is given by

ne = 2

auπ

∑
m

kF,m. (3.11)

Combining the above two equations, we obtain the result in equation (3.8) provided qz/q = 1.
This result shows that, in the long wavelength limit, if many subbands are occupied, all

	m = 0 modes for different subbands combine together to form a single classical plasmon, in
this case a 3D plasmon. Unlike the classical plasmon in a 3D electron gas, the classical plasmon
in a carbon nanotube bundle is anisotropic and can be excited only along the qz direction, as
indicated by the wavevector dependence in equation (3.10) and the fact that P0(qz, ω) vanishes
if qz = 0. This result is related to the fact that we have assumed electrons cannot tunnel
between nanotubes. If tunnelling between nanotubes is permitted, the classical plasmon can
then be excited in a direction perpendicular to the nanotubes.

In a single nanotube, the intrasubband plasmon is acoustic with the plasmon energy
approaching zero logarithmically as q → 0. In comparison, intertube Coulomb coupling
makes the intrasubband plasmon in a nanotube bundle become optical.

If only the lowest subband (m = 0) is occupied by electrons, we obtain an analytical
solution from equation (3.6) for all values of q:

(h̄ω)2 = eB0(q)(h̄ω+0)
2 − (h̄ω−0)

2

eB0(q) − 1
. (3.12)

Although in pure carbon nanotube samples many subbands are occupied, it may be possible
to achieve a single occupied subband in intercalated samples [30, 31].

Figure 1(a) shows the dielectric function ε0,0 using parameters from the experiment of [18].
For EF = 8 eV, subbands with |m| � 5 are all occupied by electrons. For comparison, we show
in figure 1(b) the case where only the lowest subband is occupied. In figure 1(b), although the
real part of the dielectric function becomes zero at two locations, the lower energy zero does
not correspond to a plasmon mode because the dielectric function has a nonzero imaginary part
at that point. The higher energy zero corresponds to the intrasubband plasmon. Comparing
figures 1(a) and (b), we can see in figure 1(a) that the effect of many occupied subbands is
to cause additional structures or singularities in the dielectric function, but there is only one
intrasubband plasmon, in this case with an energy of 8.1 eV.

Figure 2 shows the intrasubband plasmon dispersion calculated in the diagonal approxi-
mation for the case of a hexagonal lattice. The single tube case (dashed curves) and the upper
limit for intrasubband single particle excitation are also plotted for comparison. For reference,
the measured π plasmon dispersion in [18] is shown by black dots. No attempt has been made
to match the theoretical curve with the experimental values. In figure 2 the experimental data
and the calculated plasmon energy are close in magnitude and both show significant dispersion
along the nanotube direction. The dispersion in the calculated result is larger due to the use
of the quadratic wavevector dependence in equation (2.7), while in a real carbon nanotube the
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Figure 1. Dielectric function ε0,0 for a hexagonal lattice of nanotubes, with nanotube radius
R = 0.7 nm, lattice constant b = 1.5 nm, electron effective mass m∗ = 0.277 me , background
dielectric constant ε = 2.4, qxy = 0, and qz = 2 nm−1. In (a), all subbands with |m| � 5 are
occupied by electrons. In (b), only the lowest subband is occupied.

band structure is such that there is less dispersion in electron states. The agreement between
theory and experiment is satisfactory considering that the real band structure has not been used
in the calculations. The use of the real band structure will be left for future work.

We find in figure 2 that the intrasubband plasmon energies for the hexagonal lattice and
a single nanotube are both above the upper limit for intrasubband single particle excitations,
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Figure 2. Intrasubband plasmon dispersion along qz for a hexagonal lattice of nanotubes (solid
curve) in comparison with the single tube case (dashed curve). The dotted curve is the upper limit
for intrasubband single particle excitations. The parameter values are the same as in figure 1(a).
The black dots are experimental data for the π plasmon from [18].

and approach the upper limit for intrasubband single particle excitations asymptotically as qz

increases. This means that intrasubband plasmons in a carbon nanotube system are not damped
by single particle type electron–hole pair excitations. The lack of damping is a characteristic
of a 1D system. In contrast, the classical plasmon in a 3D electron gas is damped at larger
wavevectors.

Figure 2 allows us to compare the plasmon energy of the nanotube bundle with that of a
single nanotube. While the intrasubband plasmon in a single nanotube is an acoustic mode,
it becomes an optical mode in a nanotube bundle. Intertube Coulomb coupling hardens the
intrasubband plasmon at small qz to make it behave like a 3D plasmon. At large qz, the
difference between a nanotube bundle and a single nanotube diminishes. Figure 3 shows the
plasmon dispersion in the transverse plane. The abscissa in figure 3 is labeled by points in the
hexagonal Brillouin zone. If the real space hexagonal lattice has one of its two basis vectors
of length b along the x-axis, the reciprocal space lattice is hexagonal with one of its two basis
vectors along the Gy-axis, and we have M = (0, 2π√

3b
) and K = ( 2π

3b
, 2π√

3b
). For a single

nanotube, the plasmon does not have any dispersion in the transverse plane, and a line for the
single nanotube plasmon energy is included for comparison purpose. In figure 3, we can see
that there is significant dispersion in the transverse plane, and in a large portion of the phase
space, the intrasubband plasmon energy of a nanotube bundle is lower than that of a single
tube, i.e. intertube Coulomb coupling can also soften the intrasubband plasmon. The role of
intertube Coulomb coupling on the plasmon appears to be intricate and fascinating.

Although the single particle energy in equation (2.7) does not have any dispersion in
the transverse plane, the intrasubband plasmon in a nanotube bundle is predicted to have a
measurable dispersion in the transverse plane. The experimental confirmation of the plasmon
dispersion in the transverse plane will provide a good test of the theory.
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Figure 3. Intrasubband plasmon dispersion in the transverse plane for a hexagonal lattice of
nanotubes (solid curve) in comparison with the single tube case (dashed curve). The parameter
values are the same as in figure 1(a).

3.2. Quantum plasmons (	m �= 0 modes)

Quantum plasmons are generally coupled to each other, and some of the intersubband modes
are coupled to each other even in the long wavelength limit. In the diagonal approximation
where coupling between modes of different 	m is neglected, the 	m = ±l modes (l > 0)
are degenerate like the single nanotube case. To go beyond the diagonal approximation, we
consider the pair approximation where the coupling between the 	m = ±l pair of modes is
retained but the coupling to other modes are neglected. The rationale is that coupling has the
most effect on modes which are close in energy.

It can be shown that the dielectric matrix elements associated with the 	m = ±l modes
satisfy the following relations:

ε−l,−l = εl,l, ε−l,l = ε∗
l,−l . (3.13)

In the pair approximation, the coupled pair of 	m = ±l intersubband plasmon modes are
determined by the zeros of

det

(
εl,l εl,−l

ε∗
l,−l εl,l

)
= 0. (3.14)

Equation (3.14) is equivalent to

1 − Pl(qz, ω)[Ql,l(q) ± |Ql,−l(q)|] = 0. (3.15)

If only the lowest subband (m = 0) is occupied, we obtain an analytical solution

(h̄ω)2 = eBl±(q)(h̄ω+0 + El)
2 − (h̄ω−0 + El)

2

eBl±(q) − 1
(3.16)

where

Bl±(q) = πh̄2qzau

m∗[Ql,l(q) ± |Ql,−l(q)|] (3.17)

and El = h̄2l2/(2m∗R2) is the single particle energy for an intersubband transition from m = 0
to l or −l subbands. In the long wavelength limit, (3.16) reduces to



Plasmons in carbon nanotube bundles 5249

Table 1. List of coupled pair of 	m = ±l modes in the long wavelength limit.

Lattice type Coupled pair of 	m = ±l modes
in the q → 0 limit

Hexagonal lattice 	m = ±1,a

	m = ±3, ±6, ±9, . . .

Square lattice 	m = ±1,a

	m = ±2, ±4, ±6, . . .

All other 2D lattices 	m = ±1, ±2, ±3, . . .

a Except when q → 0 is achieved along z-axis with qxy = 0.

(h̄ω)2 = E2
l +

4ElkF,0

πau

[Ql,l(0) ± |Ql,−l(0)|]. (3.18)

The second term on the right side of equation (3.18) is the depolarization shift, reflecting the
collective nature of the intersubband plasmon. Equation (3.18) indicates that the intersubband
plasmons are optical. The presence of El in both terms of equation (3.18) indicates that the
	m = ±l intersubband plasmons are reliant on the quantization of the energy levels. For this
reason we refer to intersubband plasmons as quantum plasmons.

The two Q factors in equation (3.18) determine the depolarization shift. One can show
that Ql,l(0) is always positive and the depolarization shift term is never negative. When the
second Q factor Ql,−l(0) vanishes, the 	m = ±l modes are decoupled and degenerate in the
long wavelength limit. Whether or not Ql,−l(0) vanishes depends on the lattice type and the
value of l. There are five Bravais lattices in 2D, with n-fold rotation symmetry axes as follows:
hexagonal lattice (n = 6), square lattice (n = 4), primitive rectangular, centred rectangular,
and oblique lattices (n = 2). From equation (2.25), we see that for l > 1, Ql,−l(0) = 0 if 2l/n

is not an integer, while for l = 1, Ql,−l(0) �= 0 as long as qxy/q �= 0. Therefore, for l > 1,
the 	m = ±l modes are coupled to each other in the long wavelength limit only if 2l/n is
an integer. For the 	m = ±1 modes, their coupling not only depends on the lattice type, but
also on how the long wavelength limit is achieved. If qxy/q �= 0 when q → 0, the 	m = ±1
modes are coupled to each other for any lattice in the long wavelength limit. If qxy/q = 0
when q → 0, the 	m = ±1 modes are decoupled for a hexagonal lattice or square lattice,
while for other lattice types they are coupled in the long wavelength limit. Table 1 lists the
coupled pair of 	m = ±l modes in the long wavelength limit for all 2D lattice types.

Equation (3.18) can be compared to the single nanotube case,

(h̄ω)2 = E2
l +

2e2ElkF,0

lε
. (3.19)

Equation (3.19) was derived from equation (2.23) by taking the long wavelength limit, and
noting that when |	m| = l �= 0 and qz → 0, I	m(qzR)K	m(qzR) → 1/(2l), and
P	m(qz, ω) → (4kF,0El/π)/[(h̄ω)2 − E2

l ] when only the lowest subband is occupied.
We can study the significance of intertube coupling by taking the ratio of the depolarization

shift terms in equations (3.18) and (3.19). We find this ratio to be

γ±(l) = 8l

au

lim
q→0

[∑
Ḡ

J 2
l (|q̄xy + Ḡ|R)

|q + G|2 ±
∣∣∣∣
∑
Ḡ

J 2
l (|q̄xy + Ḡ|R)e−i2lφ0(q̄xy+Ḡ)

|q + G|2
∣∣∣∣
]

= 8lR2

au4l
lim
q→0

[
δl,1 sin2 θ +

∑
Ḡ�=0

4lJ 2
l (GR)

(GR)2

±
∣∣∣∣δl,1 sin2 θe−i2lφ0(q̄xy ) +

∑
Ḡ�=0

4lJ 2
l (GR)e−i2lφ0(Ḡ)

(GR)2

∣∣∣∣
]

(3.20)
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Figure 4. γ± as a function of l for a hexagonal lattice of nanotubes. γ greater (less) than one
implies the hardening (softening) of the mode near  point. Parameters used: R = 0.7 nm, b = 1.5
nm, and sin θ = 1.

where sin θ = qxy/q. Figure 4 shows the γ±(l) values for l up to 20. For the hexagonal lattice,
γ+(l) and γ−(l) are different for l = 1, 3, and multiples of three, but the difference becomes
smaller as l increases. Interestingly, for those degenerate modes, γ±(l) values stay essentially
constant at 0.63, suggesting that these modes are softened by intertube Coulomb coupling by
the same amount in the long wavelength limit. For l > 3 all γ values in figure 4 are <1,
which means that intertube Coulomb coupling softens higher l intersubband plasmons in the
long wavelength limit. Interestingly, intertube Coulomb coupling softens both the l = 2 and 4
modes but hardens one of the l = 3 mode in figure 4. For l = 1, equation (3.20) implies that
the intersubband plasmon can either be hardened or softened depending on the value of sin θ .

Figure 5 shows the dispersions along qz of the quantum plasmons with 	m = ±1, ±2. The
	m = ±1 modes are degenerate, and so are 	m = ±2 modes. Contrary to the case in figure 2,
these modes are lower in energy than the corresponding modes in a single nanotube. In the limit
of qz = 0, the 	m = 1 and 2 plasmons approach energies of 3.37 and 7.86 eV, respectively.
The upper limits for 	m = 1 and 2 single particle excitations at qz = 0 are 0.39 and 1.23 eV,
respectively. This means that at qz = 0, there is a huge depolarization shift between single
particle intersubband excitations and the corresponding quantum plasmons. This property is
reminiscent of the large depolarization shift for quantum plasmons in semiconductor quantum
wire superlattices [25, 26].

Figure 6 shows the dispersions of the 	m = ±1 plasmons in the transverse plane. Near
the M point the upper branch of the two modes is higher in energy than the mode in a single
nanotube, hence intertube Coulomb coupling hardens this mode near M but softens it near .
Similar to the classical plasmon, quantum plasmons also have significant dispersions in the
transverse plane. For qz �= 0, the 	m = ±1 plasmon modes are degenerate at the  point,
while for qz = 0, the 	m = ±1 plasmon modes are split at the  point (due to the sin θ terms
in equation (3.20)). The behaviour of the 	m = ±1 modes are singular at the  point around
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Figure 5. Dispersion of the 	m = ±1, ±2 intersubband plasmon modes for a hexagonal lattice
of nanotubes (solid curves) in comparison with the single tube case (dashed curves). The squares
represent the upper limits for 	m = ±1, ±2 single particle transition energies. For each pair of
curves of the same type, the higher (lower) one corresponds to 	m = ±2 (±1). The parameter
values are the same as in figure 1(a).
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Figure 6. Dispersion of the 	m = ±1 intersubband plasmon in the transverse plane for a hexagonal
lattice of nanotubes (solid curves) in comparison with the single tube case (dashed curve). The
parameter values are the same as in figure 1(a).

qz = 0, as suggested by equation (3.20). This singularity is absent in other intersubband or
intrasubband modes.
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4. Discussion

In this paper we have used the pair approximation and neglected coupling to modes outside the
pair. In the long wavelength limit, the 	m = l (l �= 0) mode is also coupled to 	m = in + l

modes with i being a nonzero integer and n the rotation symmetry of the lattice. For finite
wavevectors, there is coupling to even more modes. Effects of such coupling remain to be
explored in future studies.

We have used a conventional electron gas model to describe single particle states in a
carbon nanotube. Several authors have suggested that electronic states in carbon nanotubes
are not described by Fermi-liquid theory, but by Luttinger-liquid theory [32–34]. Because
of this, the study of plasmons in carbon nanotubes may require an entirely different theory.
However, in that case the development of the present theory is still valuable, because it will
allow a comparison between two types of fundamentally different theories.

A common feature of all quantum plasmons and the classical plasmon is that the
plasmon curves do not cross the upper limit for the corresponding single particle excitations,
hence the plasmons are not damped by the corresponding single particle electron–hole pair
excitations.

The theoretical framework developed here can be applied to more complicated models
for carbon nanotubes instead of the free electron gas model, such that the real energy spectra
of carbon nanotubes can be used. While the quantitative results will change, the qualitative
features predicted based on the simple model are expected to survive.
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